Document Type

Article

Journal/Book Title

Chemical Physics

Publication Date

3-15-2018

Publisher

Elsevier

First Page

1

Last Page

26

Abstract

Injection of photoexcited electrons in the para-Ethyl Red dye to TiO2 nanoparticles (Anatase, 40 nm diameter) is characterized by transient absorption on ultrafast time scales. This study focuses on understanding the effect of aprotic solvents on the injection rate. Transient absorption at 1900 cm−1 is probed following a 400 nm pulse which excites the electronic transition of p-ER adsorbed on TiO2 through its carboxylic group. Measurements conducted in three different solvents show that electron injection lifetimes are in the 250–300 fs range but display a trend in correlation with solvent polarity: the electron injection lifetime is the shortest (257 fs) in acetonitrile followed by dichloromethane (271 fs) and chloroform (296 fs). This trend can be understood by using the Marcus theory in which the reorganization energy varies correspondingly in the three different solvents. This study shows that for aprotic solvents the one with the highest polarity facilitates the fastest electron injection.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.