Document Type


Journal/Book Title

The Journal of Physical Chemistry

Publication Date



American Chemical Society





First Page


Last Page



The tetravalent character of tetrel atoms leaves only limited room for an incoming nucleophile to approach and engage in a noncovalent bond with a tetrel atom. Any such approach can only occur at the expense of internal geometric distortions. The balance between attractive forces and repulsive steric crowding was studied for a series of Lewis acids of the type FTR3 (T = Si, Ge, Sn, Pb) which were allowed to interact with various bases. The strength and other properties of the tetrel bond are examined as the R groups are made progressively larger, varying from H and CH3 to isopropyl and tert-butyl, which induce steric crowding with the incoming base. The effects of crowding which impede the bond can be offset by enlarging the T atom, by adding electron-withdrawing substituents to the Lewis acid, or by considering stronger bases such as anions. The tetrel bond energies reach up to 10 kcal/mol for a pair of neutral molecules with no electron-withdrawing substituents on the Lewis acid. Adding −CF3 substituents grows the interaction energy to as high as 35 kcal/mol, and a further increment occurs for an anionic base, taking the maximum up to 54 kcal/mol.

Included in

Chemistry Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.