Document Type


Journal/Book Title

Batteries & Supercaps

Publication Date



Wiley - VCH Verlag GmbH & Co. KGaA





First Page


Last Page



DFT calculations were conducted to provide insightful and unprecedented thermodynamic insights on tetrahydrofuran (THF) solvation, isomerization, chlorination, and complexation of possible Mg-Cl coordination species for the popular Mg-Cl electrolytes. Computational results using the M06-2x functional with the 6-31+G(d) basis set indicate trigonal bipyramidal e, e-cis-tbp-MgCl2(THF)3 dichloride species and octahedral [MgCl(THF)5]+ monochloride species are the dominant mononuclear species. These two can combine to form the active dinuclear species, [(μ-Cl)3Mg2(THF)6]+ with a free energy -6.30 kcal/mol, which is calculated to be the dominant Mg-Cl species in solution. Two mono-cation species, [(μ-Cl)3Mg2(THF)6]+ and [MgCl(THF)5]+ have comparable LUMO energies, thus both of them can act as active species for Mg deposition. However, the significant dominance of the dinuclear species in the electrolyte indicates that it is the primary species involved in reversible Mg deposition.


This is the peer reviewed version of the following article: Moss, J. B., Zhang, L., Nielson, K. V., Bi, Y., Wu, C., Scheiner, S. I., Liu, T. L. (2019). Computational Insights into Mg-Cl Complex Electrolytes for Rechargeable Magnesium Batteries. Batteries \& Supercaps, 2(9), 792-800., which has been published in final form at This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Included in

Chemistry Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.