High-Performance Solar Flow Battery Powered by a Perovskite/Silicon Tandem Solar Cell

Document Type

Article

Journal/Book Title

Nature Materials

Publication Date

7-13-2020

Publisher

Nature Publishing Group

Award Number

NSF, Division of Chemistry (CHE) 1847674

Funder

NSF, Division of Chemistry (CHE)

Volume

19

Issue

12

First Page

1326

Last Page

1331

Abstract

The fast penetration of electrification in rural areas calls for the development of competitive decentralized approaches. A promising solution is represented by low-cost and compact integrated solar flow batteries; however, obtaining high energy conversion performance and long device lifetime simultaneously in these systems has been challenging. Here, we use high-efficiency perovskite/silicon tandem solar cells and redox flow batteries based on robust BTMAP-Vi/NMe-TEMPO redox couples to realize a high-performance and stable solar flow battery device. Numerical analysis methods enable the rational design of both components, achieving an optimal voltage match. These efforts led to a solar-to-output electricity efficiency of 20.1% for solar flow batteries, as well as improved device lifetime, solar power conversion utilization ratio and capacity utilization rate. The conceptual design strategy presented here also suggests general future optimization approaches for integrated solar energy conversion and storage systems.

Share

COinS