Document Type

Conference Paper

Journal/Book Title/Conference

24th Annual European Symposium on Algorithms (ESA 2016)

Volume

57

Publisher

Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

Location

Aarhus, Denmark

Publication Date

8-22-2016

First Page

77:1

Last Page

77:17

Abstract

In this paper, we study the problem of computing Euclidean geodesic centers of a polygonal domain P of n vertices. We give a necessary condition for a point being a geodesic center. We show that there is at most one geodesic center among all points of P that have topologically-equivalent shortest path maps. This implies that the total number of geodesic centers is bounded by the size of the shortest path map equivalence decomposition of P, which is known to be O(n^{10}). One key observation is a pi-range property on shortest path lengths when points are moving. With these observations, we propose an algorithm that computes all geodesic centers in O(n^{11}*log(n)) time. Previously, an algorithm of O(n^{12+epsilon}) time was known for this problem, for any epsilon > 0.

Comments

http://drops.dagstuhl.de/opus/volltexte/2016/6418/

Share

COinS