Title

GreenTPU: Predictive Design Paradigm for Improving Timing Error Resilience of a Near-Threshold Tensor Processing Unit

Document Type

Conference Paper

Journal/Book Title/Conference

Proceedings of the IEEE/ACM Design Automation Conference

Issue

7

Publisher

Institute of Electrical and Electronics Engineers

Publication Date

7-1-2020

Funder

National Science Foundation

First Page

1557

Last Page

1566

Abstract

The emergence of hardware accelerators has brought about several orders of magnitude improvement in the speed of the deep neural-network (DNN) inference. Among such DNN accelerators, the Google tensor processing unit (TPU) has transpired to be the best-in-class, offering more than 15× speedup over the contemporary GPUs. However, the rapid growth in several DNN workloads conspires to escalate the energy consumptions of the TPU-based data-centers. In order to restrict the energy consumption of TPUs, we propose GreenTPU-a low-power near-threshold (NTC) TPU design paradigm. To ensure a high inference accuracy at a low-voltage operation, GreenTPU identifies the patterns in the error-causing activation sequences in the systolic array, and prevents further timing errors from similar patterns by intermittently boosting the operating voltage of the specific multiplier-and-accumulator units in the TPU. Compared to a cutting-edge timing error mitigation technique for TPUs, GreenTPU enables 2× to 3× higher performance (TOPS) in an NTC TPU, with a minimal loss in the prediction accuracy.

This document is currently not available here.

Share

COinS