Title

Architecturally Homogeneous Power-Performance Heterogeneous Multicore Systems

Document Type

Article

Journal/Book Title/Conference

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Volume

21

Issue

4

Publisher

Institute of Electrical and Electronics Engineers

Publication Date

4-1-2013

First Page

670

Last Page

679

Abstract

Dynamic voltage and frequency scaling (DVFS), a widely adopted technique to ensure safe thermal characteristics while delivering superior energy efficiency, is rapidly becoming inefficient with technology scaling due to two critical factors: 1) inability to scale the supply voltage due to reliability concerns and 2) dynamic adaptations through DVFS cannot alter underlying power hungry circuit characteristics, designed for the nominal frequency. In this paper, we show that DVFS scaled circuits substantially lag in energy efficiency, by 22%-86%, compared to ground up designs for target frequency levels. We propose architecturally homogeneous power-performance heterogeneous multicore systems, a fundamentally alternate means to design energy efficient multicore systems. Using a system level computer-aided design (CAD) approach, we seamlessly integrate architecturally identical cores, designed for different voltage-frequency domains. We use a combination of standard cell library based CAD flow and full system architectural simulation to demonstrate 11%-22% improvement in energy efficiency using our design paradigm. © 1993-2012 IEEE.

This document is currently not available here.

Share

COinS