Date of Award:

5-2011

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Computer Science

Committee Chair(s)

Daniel L. Bryce

Committee

Daniel L. Bryce

Committee

Vicki H. Allan

Committee

Daniel W. Watson

Abstract

Partially-observable Markov decision processes (POMDPs) are especially good at modeling real-world problems because they allow for sensor and effector uncertainty. Unfortunately, such uncertainty makes solving a POMDP computationally challenging. Traditional approaches, which are based on value iteration, can be slow because they find optimal actions for every possible situation. With the help of the Fast Forward (FF) planner, FF- Replan and FF-Hindsight have shown success in quickly solving fully-observable Markov decision processes (MDPs) by solving classical planning translations of the problem. This thesis extends the concept of problem determination to POMDPs by sampling action observations (similar to how FF-Replan samples action outcomes) and guiding the construction of policy trajectories with a conformant (as opposed to classical) planning heuristic. The resultant planner is called POND-Hindsight.

Checksum

a27029018f3345bb9414b03746ebb520

Comments

This work is made publicly available electronically on September 29, 2011.

Share

COinS