Date of Award:

2012

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Ecology

Advisor/Chair:

James A. MacMahon

Abstract

Elucidating the ecological determinants of community structure and how they vary spatially has a long history in ecology, but there still is no consensus on the mechanisms behind diversity patterns. The primary objective of this dissertation was to focus on spider assemblages to investigate how the fine-scale habitat associations of organisms may drive their community composition at larger scales. Research was conducted in the Bear River Mountains, Utah, in an attempt to elucidate the potential role of species-microhabitat associations in driving three well-known patterns of community composition that have typically been investigated at broad scales: 1) elevation gradients of species diversity, 2) the response of species assemblages to neighboring habitat structure and 3) community composition at the edges of habitat patches. Slope aspect was a significant predictor of spider density and species richness when communities were compared at the same elevation, suggesting that fine-scale topographic variables may play an important role in shaping elevational patterns of species composition. Cursorial spider composition was strongly linked to site temperature only, whereas differences across web spider assemblages significantly increased with dissimilarities in woody plant cover and temperature. The study on the effects of neighboring habitat structure revealed markedly reduced cursorial spider densities in shrubs without surrounding structure, and more cursorial species in control shrubs, whereas web spiders lacked any significant response to treatments. These contrasting responses indicate that data should be collected at larger spatial extents for mobile species, and that mobility may mediate the outcome of surrounding habitat modifications on the local composition of communities. In the last study, I focused on communities in which the edge-dwelling spiders Theridion and Dictyna strongly differed in terms of concealment and substrate generalization and found that microhabitat choice may affect the sensitivity of species to habitat geometry, a characteristic associated with habitat fragmentation. This work suggests that a better understanding of the links between the biological traits of species and their fine-scale environmental requirements may help uncover the mechanisms behind spatial patterns of community composition at larger scales.

Comments

This work made publicly available electronically on May 10, 2012.

Included in

Philosophy Commons

Share

COinS