Date of Award:
8-2012
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Electrical and Computer Engineering
Committee Chair(s)
Reyhan Baktur
Committee
Reyhan Baktur
Committee
Edmund Spencer
Committee
Jacob Gunther
Abstract
Small satellites are satellites that weight less than 500 kg. Compared to larger satellites, a small satellite, especially a cube satellite, has limited surface area. The limited surface area casts challenges for allocating essential parts, such as antennas, for the satellite. Therefore, antennas that are conformal to the satellite surface have distinct advantages over other types of antennas that need significant mounting area. One of the very effective conformal antennas is cavity-backed slot antennas that can be integrated around solar cells and do not compete for extra surface area. The previous study performed on cavity-backed slot antennas was mainly a feasibility study and did not address realistic concerns such as effective feeding methods for the antennas. This thesis work is aimed at providing more detailed study on achieving high quality circular polarization (CP) and simplified feed design to initiate effective integration of the antenna with solar panel. In order to accurately characterize an antenna, an effective antenna range in an anechoic chamber is important. Utah State University had an effective near-field range; however, there was not an fully shielded anechoic chamber. As another objective of this thesis work, a state-of-the-art anechoic chamber has been constructed, calibrated, and utilized to measure different antenna parameters. This thesis also shows correct methods to measure important antenna properties such as CP and antenna efficiency.
Checksum
d5765582aed725add52d59bec7bc3602
Recommended Citation
Chandak, Mangalam, "Design and Characterization of Circularly Polarized Cavity-Backed Slot Antennas in an In-House-Constructed Anechoic Chamber" (2012). All Graduate Theses and Dissertations. 1265.
https://digitalcommons.usu.edu/etd/1265
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .
Comments
This work made publicly available electronically on July 31, 2012.