Date of Award:
5-2013
Document Type:
Dissertation
Degree Name:
Doctor of Philosophy (PhD)
Department:
Physics
Committee Chair(s)
James T. Wheeler
Committee
James T. Wheeler
Committee
David Peak
Committee
Charles G. Torre
Committee
Zhaohu Nie
Committee
Robert W. Schunk
Abstract
In 1920, Rudolf Bach proposed an action based on the square of the Weyl tensor or CabcdCabcd where the Weyl tensor is an invariant under a scaling of the metric. A variation of the metric leads to the field equation known as the Bach equation. In this dissertation, the same action is analyzed, but as a conformal gauge theory. It is shown that this action is a result of a particular gauging of this group. By treating it as a gauge theory, it is natural to vary all of the gauge fields independently, rather than performing the usual fourth-order metric variation only. We show that solutions of the resulting vacuum field equations are all solutions to the vacuum Einstein equation, up to a conformal factor—a result consistent with local scale freedom. We also show how solutions for the gauge fields imply there is no gravitational self energy.
Checksum
5868821258314667ac1ac0935a6aa97a
Recommended Citation
Trujillo, Juan Teancum, "Weyl Gravity as a Gauge Theory" (2013). All Graduate Theses and Dissertations. 1951.
https://digitalcommons.usu.edu/etd/1951
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .