Date of Award:

2013

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Mechanical and Aerospace Engineering

Advisor/Chair:

Thomas H Fronk

Abstract

The effects of a composite overwrapped gun barrel with viscoelastic damping layers are investigated. Interlaminar stresses and constrained layer damping effects are described. The Modal Strain Energy method is developed for measuring the extent to which the barrel is damped. The equations of motion used in the finite element analysis are derived. The transient solution process is outlined. Decisions for selected parameters are discussed. The results of the finite element analyses are presented using the program written in FORTRAN. The static solution is solved with a constant internal pressure resulting in a calculated loss factor from the Modal Strain Energy Method. The transient solution is solved using the Newmark-Beta method and a variable internal pressure. The analyses conclude that strategically placed viscoelastic layers dissipate strain energy more effectively than a thick single viscoelastic layer. The optimal angle for maximizing the coefficient of mutual influence in a composite cylinder is not necessarily the optimal angle when viscoelastic layers are introduced between layers.

Share

COinS