Date of Award:


Document Type:


Degree Name:

Master of Science (MS)


Wildland Resources

Department name when degree awarded

Range Science

Committee Chair(s)

Gerald F. Gifford


Gerald F. Gifford


Paul E. Packer


Richard H. Hawkins


During the period of October 1974 to August 1976, a study was conducted to measure the effects of surface soil removal on plant production, plant transpiration rates, nitrate nitrogen mineralization rates, and selected hydrologic parameters (infiltration rates, potential sediment production, and chemical quality of runoff water). The treatments were incremental 7.6 centimeter soil layers to a depth of 30.5 centimeters.

Plant production and transpiration ratios (or water use efficiencies) were measured in greenhouse studies using Agrogyron desertorum grown in the incremental 7.6 centimeter soil layers from five study sites throughout the state of Utah, (Blanding, Brush Creek, Milford, Huntington, and Dove Creek). Significant decreases in plant production and increases in transpiration ratios were measured for all sites at incremental depths beyond 7.6 centimeters. These changes in plant production and transpiration ratios were found to be linearly related to the nitrate nitrogen content of the soils as determined at the time the soils were collected for use in the greenhouse.

Nitrogen mineralization rates for a 6 week period were measured under field conditions at Milford and Blanding for each of the 7.6 centimeter incremental soil layers. Nitrate nitrogen mineralization was linearly correlated to the organic carbon content of the soil. Decreased mineralization rates as measured in the field at both study sites were reflected in significant increases in plant water requirements and also decreases in production as measured in greenhouse studies.

Hydrologic parameters were measured at each 7.6 centimeter incremental soil depth using a Rocky Mountain infiltrometer. With one exception, significant differences in infiltration capacities among treatment depths did not occur during either 1975 or 1976 at either the Blanding or Milford site. At the Blanding site a significant decrease in the infiltration capacity occurred beyond the 22.9 centimeter depth due to a hardpan development. A significant change in infiltration capacities was noted between the 1975 and 1976 field seasons as pooled over both treatment depths and study sites.

There were no significant differences in potential sediment production between sites or among treatment depths within a site. In terms of runoff water quality, a significant change in phosphorus was observed only at the Blanding site between the 1975 and 1976 field seasons. Significant differences in potassium concentrations were found to exist between sites and among soil depths.



Included in

Life Sciences Commons