Title
Optimization and Control of Lumped Transmitting Coil-Based In-Motion Wireless Power Transfer Systems
Date of Award:
5-2015
Document Type:
Thesis
Degree Name:
Master of Science (MS)
Department:
Electrical and Computer Engineering
Committee Chair(s)
Zeljko Pantic
Committee
Zeljko Pantic
Committee
Regan Zane
Committee
Rajnikant Sharma
Abstract
Wireless inductive power transfer systems are the only viable option for transferring energy to a moving vehicle. In recent years, there has been a great deal of interest in in-motion vehicle charging. The dominant technology thus far for in motion charging is elongated tracks, creating a constant eld for the moving vehicle. This technology suers from high volt ampere ratings and lower efficiency of 70%. On the other hand, stationary charging systems can demonstrate efficiency up to 95%. This thesis proposes lumped coils, similar to stationary charging coils for in-motion electric vehicle charging application. This novel primary coil architecture introduces new challenges in optimization and control. Traditional design of wireless inductive power transfer systems require designer experience, use of time consuming 3D FEM algorithms and lacks the comprehensive nature required for these systems. This thesis proposes two new optimization algorithms for the design problem which are comprehensive, based on only analytical formulations and do not need designer experience. There are challenges in the control of power transfer as well. Higher efficiency comparable to stationary systems can only be realized with proper synchronization of primary voltage with the vehicle position. Vehicle position detection and communication introduce significant cost and convenience issues. This thesis proposes a novel control algorithm which eliminates the need for vehicle position sensing and yet transfers the required percentage of energy. Both the optimization and control algorithms are verified with hardware setup.
Checksum
a68b106f4434c3c1d4cf9aaee74d0405
Recommended Citation
Hasan, Nazmul, "Optimization and Control of Lumped Transmitting Coil-Based In-Motion Wireless Power Transfer Systems" (2015). All Graduate Theses and Dissertations. 4503.
https://digitalcommons.usu.edu/etd/4503
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .