Date of Award:


Document Type:


Degree Name:

Master of Science (MS)


Civil and Environmental Engineering

Committee Chair(s)

Marvin W. Halling


Marvin W. Halling


Paul Barr


Joseph Caliendo


The frequent use of precast concrete panels has been used to decrease the construction time for bridges. Cracking often occurs at the transverse connections of these panels, resulting in corrosion, and decreased bridge life. Previous laboratory testing of these connections was performed at Utah State University for the Utah Department of Transportation to determine maximum shear and moment capacities, cracking behavior, and cracking loads for five different connections. Two connections are Utah Department of Transportation standard connections. These connections are post tensioned and welded tie connection using shear studs. A different type of welded tie connection using rebar was also tested, along with two prototype connections using a curved bolt to apply post tensioning. As part of this research finite element models were created using ANSYS software to confirm the tested results, and provide models for future analysis.

Moment-deflection and shear force-deflection curves were created using the results from the laboratory testing, and were compared with the results from the finite element analysis. The finite element models produced similar behavior and cracking loads when compared to the laboratory results. The curved bolt connections were found to be a good way of applying post tensioning.