Date of Award:

5-2010

Document Type:

Dissertation

Degree Name:

Doctor of Philosophy (PhD)

Department:

Mechanical and Aerospace Engineering

Committee Chair(s)

Byard Wood

Committee

Byard Wood

Committee

Brent Stucker

Committee

Barton Smith

Committee

Ronald Sims

Committee

Heng Ban

Abstract

The work presented here investigated two methods of improving productivity in microalgal photobioreactors: applying temperature cycles intended to maximize photosynthesis and minimize respiration, and development of a mathematical model that predicts improvements in photon utilization using temporal light dilution (flashing). The experiments conducted on diurnal temperature cycles with Dunaliella tertiolecta in 30-L outdoor photobioreactors showed that a properly chosen temperature cycle can improve mass and energy productivity by 18% over an identical photobioreactor with a constant temperature. However, excessively large temperature cycle amplitudes reduced productivity. A 4-7% increase in energy content was observed in microalgae exposed to temperature cycles. The physiological reason for this could not be established. A relationship similar to the Bush Equation was obtained that related photon utilization efficiency to flashing frequency, load factor, Photosystem II (PSII) concentration and reaction frequency, and chlorophyll content. The model was validated by the experimental data of a number of researchers.

Checksum

971dde009fed4bf57c18ab3a3c25bb28

Share

COinS