Date of Award:

2004

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Geology

Advisor/Chair:

Thomas E. Lachmar

Abstract

Six cross-hole packer tests were conducted at the Big Hole fault, a dip-slip normal fault in the northern San Rafael Swell of east-central Utah. Three tests were conducted at each of two locations along the fault, each location having a different total displacement. Water was injected in the footwall, hanging wall, and fault core and pressure changes were monitored in isolated intervals in the adjoining wells. Response curves were analyzed using the type curves developed by Hsieh and Neuman, and Theis, in order to evaluate the hydraulic properties of the fault and its associated damage zone.

The tests were not quantitatively interpretable. Response curves were a poor match for Hsieh type curves and failed to give a positive definite hydraulic conductivity tensor. Theis analysis showed transmissivity varied over four orders of magnitude. The fault was both a barrier to and a conduit for fluid flow, indicating it was both heterogeneous and anisotropic with regard to flow. No correlation was seen between the fault displacement and the hydraulic properties of the fault.

The lack of consistent results indicates a high variability in the hydraulic properties of the fault, possibility resulting from changes in fault core thickness and slip surface density over small distances. Injection testing at this intermediate scale is not an effective method in determining hydraulic properties of faults in sandstone reservoirs with deformation band style faulting.

Checksum

67a47b5d3c5473c4d84ce20025730863

Included in

Geology Commons

Share

COinS