Date of Award:


Document Type:


Degree Name:

Master of Science (MS)




W. David Liddell


The Middle Cambrian Ute Formation includes some 200 m of cyclically alternating carbonates and mud rocks. These are arranged in eight to nine, meter-scale, shallowing-upwards packages, representing deposition under predominantly subtidal conditions. The packages consist of vertical sequences of shale, silty limestone, oncolitic packstone, and oolitic grainstone that exhibit little variance in this general pattern. Small-scale unconformities separate the packages. The inferred depositional environment consists of an intrashelf basin that has a peritidal platform near its margins. The craton, which supplied most of the terrigenous sediment, was situated to the south (Cambrian orientation), and located near the equator. One cycle includes a stromatolite biostrome that is distributed across more than 1500 km2 in northern Utah and southern Idaho. Stromatolites range from mound-like to club-shaped to columnar and reach up to 2 min vertical dimension, and 0.15 min diameter.

These large columnar structures were apparently established just basinward of an oolitic shoal. These ancient stromatolites, which are in many ways similar to those stromatolites recently reported from the Bahamas, contain many clues that suggest that they grew in normal marine conditions. These findings require a rethinking of the commonly held belief that Phanerozoic columnar stromatolites are indicators of restricted, hypersaline conditions. Analysis of several orders of laminae in Ute Formation stromatolites indicates periodicity in accumulation from which yearly accumulation rates may be inferred. Values obtained for growth rate range from 4.39-4.88 cm/yr. Such rates of accumulation are in accord with those documented for ancient stromatolites from the Bitter Springs Formation. Thus, even considering the occurrence of hiatal surfaces within the stromatolites, the duration of the columnar-stromatolite horizon probably encompasses 10-2 - 10-3 yr.

The biostrome's position in the sequence of cycles and the changes in stromatolite morphology across depositional dip suggest that the biostrome may be essentially isochronous across its outcrop area and, thus, may be viewed as a bioevent horizon. The stromatolites also contribute to a better understanding of the paleogeography of the study area during the Middle Cambrian by providing information on relative energy levels and flow directions. (212 pages)



Included in

Geology Commons