Date of Award:


Document Type:


Degree Name:

Master of Science (MS)


Electrical and Computer Engineering


Aravind Dasu


Reconfigurable computing is an evolving paradigm in computer architecture where the ability to load different designs onto a field programmable gate array (FPGA) at execution time has proven useful in adapting FPGA prototypes to a wide range of applications. Reconfiguration techniques can be primarily categorized as Partial Dynamic Reconfiguration (PDR) and Partial Bitstream Relocation (PBR). PDR involves reconfiguring a single Partial Reconfiguration Region (PRR) with a partial bitstream, while PBR is targeted at reconfiguring multiple PRRs on the FPGA with a partial bitstream. Previous techniques have primarily focused on using either slower off-chip memory or on-chip memory-based solutions to store the partial bitstream, and then reconfigure a PRR on the FPGA. Another technique called Accelerated Relocation Circuit (ARC) provides a more efficient method where a PRR (active bitstream) is used to relocate to other PRRs on the fly using minimal on-chip memory. This thesis proposes a novel technique for Memory-based Frame Data Reconfiguration (M-FDR) of multi-row PRRs. ARC hardware was re-architected to provide an improved frame data reconfiguration framework, called Accelerated Memory-based Reconfiguration Circuit (AMRC) for use in MBR scenarios. A performance prediction model is also proposed that confirms the speedup achieved by AMRC, in comparison to ARC and earlier methods. This technique was found to be 26.6% faster than ARC in PRR-PRR relocation. In comparison to other relocation techniques like Bit Relocation Filter (BiRF), AMRC provides a speedup of 231x. The AMRC method was also able to dynamically parallelize multi-row designs with an average context switching time of 0.37 ms.




This work made publicly available electronically on August 2, 2010.