Date of Award:

5-2019

Document Type:

Thesis

Degree Name:

Master of Science (MS)

Department:

Animal, Dairy, and Veterinary Sciences

Advisor/Chair:

Jeffery O. Hall

Co-Advisor/Chair:

Jong-Su Eun

Third Advisor:

Kerry A. Rood

Abstract

Rumen protected Methionine (MET) and Lysine (LYS) are critical for milk protein synthesis in dairy cows. N-acetyl-L-methionine (NALM) is a MET derivative that consists of L-Met protected with an acetyl group that is attached to the α-amino group.N-acetyl-L-lysine (NALL) is a LYS derivative that is similarly protected. The objectives of these studies were to quantify the gastrointestinal availability of NALM and NALL. Three experiments were run as 3 × 3 Latin square using 3 second lactation Holstein cows that have been fitted with cannulas in the rumen and duodenum. The cows were fed diets containing the supplements for two weeks prior to each experiment so that the rumen microbes had time to adjust to the supplement. Each period consisted of 10 d of adaptation followed by 2 d of sampling. A dose of 0, 30, or 60 g of NALM was placed under the rumen mat at the time of feeding every day during experiment 1. The cows were similarly supplied with 0, 60, or 120 g of ƐNALL during experiment 2. The cows were supplemented with 0 g, 120 g ofƐNALL, or 120 g of diNALL during experiment 3. On day one of sampling, a liquid marker (Co-EDTA) was also administered at the time of the protected AA administration. Blood, ruminal, and duodenal samples were taken at hours 0, 1, 3, 6, 9, 12, and 24 post-feeding. There were no differences for milk production, milk protein, milk fat, or DMI for NALM or either NALL. There were no differences for ruminal escape (69.1% and 46.2% respectively) and duodenal appearance (2.16% and 3.40% respectively). The ruminal escape of ƐNALL was not different between the 120 g dose (32.7%) and the 60 g dose (27.2%). Duodenal appearance was higher (P < 0.01) for the 60 g dose (2.86%) than for the 120 g dose (1.19%) of ƐNALL. Acetate, propionate, butyrate, and valerate were higher (P < 0.01) for the supplemented cows during experiment 1 with NALL. There were no differences between ƐNALL and diNALL for rumen escape, duodenal appearance, VFA production, or blood LYS AUC. Results of the experiment verify significant protection of the N-acetyl MET and LYS from rumen degradation.

Checksum

0f1f33207975bba6f5dc17cb9273e0b5

Included in

Dairy Science Commons

Share

COinS