Ground-Water Quality in the Carbonate-Rock Aquifer of the Great Basin, Nevada and Utah, 2003

Donald H. Schaefer
Susan A. Thiros
Michael R. Rosen
U.S. Department of hte Interior
U.S. Geological Survey
National Water-Quality Assessment Program

Scientific Investigations Report 2005-5232


The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program. Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s. Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples. Nine different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7 μg/L, with a median value of 9.6 μg/L. Factors affecting arsenic concentration in the carbonate-rock aquifer in addition to geothermal heating are its natural occurrence in the aquifer material and time of travel along the flow path. Most of the chemical analyses, especially for VOCs and nutrients, indicate little, if any, effect of overlying land-use patterns on ground-water quality. The water quality in recharge areas for the aquifer where human activities are more intense may be affected by urban and/or agricultural land uses as evidenced by pesticide detections. The proximity of the carbonate-rock aquifer at these sites to the land surface and the potential for local recharge to occur through the fractured rock likely results in the occurrence of these and other land-surface related contaminants in the ground water. Water from sites sampled near outcrops of carbonate-rock aquifer likely has a much shorter residence time resulting in a potential for detection of anthropogenic or land-surface related compounds. Sites located in discharge areas of the flow systems or wells that are completed at a great depth below the land surface generally show no effects of land-use activities on water quality. Flow times within the carbonate-rock aquifer, away from recharge areas, are on the order of thousands of years, so any contaminants introduced at the land surface that will not degrade along the flow path have not reached the sampled sites in these areas.