Date of Award
12-2012
Degree Type
Report
Degree Name
Master of Science (MS)
Department
Mechanical and Aerospace Engineering
Committee Chair(s)
Barton L. Smith
Committee
Barton L. Smith
Committee
Robert Spall
Committee
Aaron Katz
Committee
Heng Ban
Abstract
Particle image velocimetry (PIV) is a powerful measurement technique used to acquire instantaneous measurements of entire flow fields at a given instant in time. Quantifying the uncertainty and error in PIV is a critical part of realizing the full potential of PIV as a flow measurement technique.
The noise floor of PIV is the minimum amount of random error that can be achieved for a particular standard cross-correlation (SCC) algorithm. The noise floor of the SCC used by DaVis in correlating image pairs is explored. Two methods for creating image pairs for correlation are compared, namely pseudo image pairs and artificial image pairs. A common PIV experimental setup with seeded water in a glass tank was used to acquired images at dt approximately 0 seconds between images. The aperture or f# of the lens was varied in order to achieve a range of particle image diameters at two different magnifications. A Matlab code was written to upsample, shift and downsample the images by a prescribed, sub-pixel displacement. The shifted images were then imported into DaVis and correlated, resulting in displacement vector images. The random error of these images were calculated and each particle diameter is compared.
The random and bias errors of the DaVis and PRANA SCC algorithms were also compared for a fixed, optimum particle image diameter and multiple sub-pixel displacements between 0 and 1 pixel.
Recommended Citation
Jones, Kyle L., "Investigation of the Noise Floor of the Standard PIV Cross-Correlation Algorithm" (2012). All Graduate Plan B and other Reports, Spring 1920 to Spring 2023. 181.
https://digitalcommons.usu.edu/gradreports/181
Included in
Copyright for this work is retained by the student. If you have any questions regarding the inclusion of this work in the Digital Commons, please email us at .
Comments
This work made publicly available electronically on September 4, 2012.