Document Type


Journal/Book Title/Conference


Author ORCID Identifier

Anne Z. Beethe







Publication Date


Journal Article Version

Version of Record

First Page


Last Page


Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.


Researchers commonly use the 'free-fall' paradigm to investigate motor control during landing impacts, particularly in drop landings and depth jumps (DJ). While recent studies have focused on the impact of vision on landing motor control, previous research fully removed continuous visual input, limiting ecological validity. The aim of this investigation was to evaluate the effects of stroboscopic vision on depth jump (DJ) motor control. Ground reaction forces (GRF) and lower-extremity surface electromyography (EMG) were collected for 20 young adults (11 male; 9 female) performing six depth jumps (0.51 m drop height) in each of two visual conditions (full vision vs. 3 Hz stroboscopic vision). Muscle activation magnitude was estimated from EMG signals using root-mean-square amplitudes (RMS) over specific time intervals (150 ms pre-impact; 30–60 ms, 60–85 ms, and 85–120 ms post-impact). The main effects of and interactions between vision and trial number were assessed using two-way within-subjects repeated measures analyses of variance. Peak GRF was 6.4% greater, on average, for DJs performed with stroboscopic vision compared to full vision (p = 0.042). Tibialis anterior RMS EMG during the 60–85 ms post-impact time interval was 14.1% lower for DJs performed with stroboscopic vision (p = 0.020). Vastus lateralis RMS EMG during the 85–120 ms post-impact time interval was 11.8% lower for DJs performed with stroboscopic vision (p = 0.017). Stroboscopic vision altered DJ landing mechanics and lower-extremity muscle activation. The observed increase in peak GRF and reduction in RMS EMG of the tibialis anterior and vastus lateralis post-landing may signify a higher magnitude of lower-extremity musculotendinous stiffness developed pre-landing. The results indicate measurable sensorimotor disruption for DJs performed with stroboscopic vision, warranting further research and supporting the potential use of stroboscopic vision as a sensorimotor training aid in exercise and rehabilitation. Stroboscopic vision could induce beneficial adaptations in multisensory integration, applicable to restoring sensorimotor function after injury and preventing injuries in populations experiencing landing impacts at night (e.g., military personnel).