Document Type

Article

Journal/Book Title/Conference

Aerospace

Volume

7

Issue

4

Publisher

M D P I AG

Publication Date

4-12-2020

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

First Page

1

Last Page

38

Abstract

A medical grade nitrous oxide (N2O) and gaseous oxygen (GOX) “Nytrox” blend is investigated as a volumetrically-efficient replacement for GOX in SmallSat-scale hybrid propulsion systems. Combined with 3-D printed acrylonitrile butadiene styrene (ABS), the propellants represent a significantly safer, but superior performing, alternative to environmentally-unsustainable spacecraft propellants like hydrazine. In a manner analogous to the creation of soda-water using dissolved carbon dioxide, Nytrox is created by bubbling GOX under pressure into N2O until the solution reaches saturation. Oxygen in the ullage dilutes N2O vapor and increases the required decomposition energy barrier by several orders of magnitude. Thus, risks associated with inadvertent thermal or catalytic N2O decomposition are virtually eliminated. Preliminary results of a test-and-evaluation campaign are reported. A small spacecraft thruster is first tested using gaseous oxygen and 3-D printed ABS as the baseline propellants. Tests were then repeated using Nytrox as a “drop-in” replacement for GOX. Parameters compared include ignition reliability, latency, initiation energy, thrust coefficient, characteristic velocity, specific impulse, combustion efficiency, and fuel regression rate. Tests demonstrate Nytrox as an effective replacement for GOX, exhibiting a slightly reduced specific impulse, but with significantly higher volumetric efficiency. Vacuum specific impulse exceeding 300 s is reported. Future research topics are recommended.

Share

COinS