•  
  •  
 

Abstract

Invasive species have become an increasingly large concern, particularly in already degraded ecosystems, such as sagebrush (Artemisia tridentata)-steppe of the Intermountain West. Much of this ecosystem is already infested with large cheatgrass (Bromus tectorum) stands and is potentially at risk for future invasions depending on biotic and abiotic conditions. In these ecosystems, the existing vegetation, whether native or non-native, may not effectively utilize the soil moisture resources in the upper portion of the soil, termed the growth pool. If the existing vegetation does not effectively utilize moisture in the growth pool, an open resource is left for the establishment of other plants, including invasives. Through a combination of soil moisture modeling and observational studies, we identified three potential invasion pathways, particularly by annual plants, into a cheatgrass-dominated system, all consistent with the fluctuating resource hypothesis, and all resulting from an available water resource in the growth pool. Results suggest these arid and semi-arid systems are likely to be protected from novel invasive species by complete utilization of growth pool soil water resources by any existing vegetation, whether native or non-native. Our results also suggest the same features which make the site more prone to novel annual invaders may also be useful in guiding establishment of desired vegetation during restoration efforts.

Share

COinS