•  
  •  
 

Abstract

Edaphic habitats are botanically interesting because of differences in vegetation with neighboring sites and because they tend to harbor rare species. In the central Mojave Desert, there are granite colluvial substrates where creosote bush, the dominant shrub in the area, is sparser and generally smaller than in the neighboring creosote bush communities. It is on these sites that the Lane Mountain milkvetch, a rare and federally endangered species, is restricted. The milkvetch is a nitrogen-fixer and grows under and within the canopy of host shrubs. Our previous studies have demonstrated that the milkvetch has no preference for species of host shrub, except Larrea tridentata, which appears to be an unsuitable host plant for the milkvetch. In this study, we surveyed three transects within milkvetch habitats and three transects in adjacent creosote bush habitats in the year 2000 and again in 2010, a period coincident with long-term drought conditions in the Mojave Desert. Our results show that adjacent milkvetch and creosote bush shrub communities differ significantly in shrub height, shrub volume, and shrub density in the year 2000: the shrubs in milkvetch communities were more numerous but smaller compared to adjacent creosote bush scrub. Species richness also differed between communities in the year 2000: milkvetch communities contained 19 different shrub species and creosote bush communities had only 9 species. Surveys in 2010 show that the drought had significant negative effects on both shrub communities. Total shrub mortality (166 shrubs) was high compared to shrub recruitment (16 shrubs), and the majority of mortality and recruitment occurred in milkvetch communities (131 deaths and 16 recruits). Shrub densities decreased significantly in milkvetch communities in 2010, but were still considerably higher than in creosote bush communities. These results suggest that the restricted distribution of the Lane Mountain milkvetch may be the result of higher shrub densities in milkvetch shrub communities; increased shrub densities increases the proximity of suitable host shrubs, which in turn increase the probability of successful seed dispersal and establishment.

Share

COinS