Mentor

J.R. Dennison

Document Type

Report

Publication Date

1-7-2016

First Page

1

Last Page

6

Abstract

A model developed by the Materials Research Group that calculates electron penetration range of some common materials, has been greatly expanded with the hope that such extensions will predict the range in other, perhaps, more interesting materials. Developments in this extended model aid in predicting the approximate penetration depth into diverse classes of materials for a broad range of energetic incident electrons (<10 eV to >10 MeV, with better than 20% accuracy). The penetration depth—or range—of a material describes the maximum distance electrons can travel through a material, before losing all of its incident kinetic energy. This model has started to predict a formula that estimates the penetration depth for materials without the need for supporting data, but rather using only basic material properties and a single fitting parameter (NV, described as the effective number of valence electrons). NV was first empirically calculated for 247 materials which have tabulated range and inelastic mean free path data in the NIST ESTAR and IMFP databases. Correlations of NV with key material constants (e.g. atomic number, atomic weight, density, and band gap) were established for this set of materials. These correlations allow prediction of the range for additional materials which have no supporting data. These calculations are of great value for studies involving high electron bombardment, such as electron spectroscopy, spacecraft charging or electron beam therapy.

Included in

Physics Commons

Share

COinS