All Physics Faculty Publications
Document Type
Article
Journal/Book Title/Conference
Journal of Geophysical Research
Volume
114
Issue
D18117
Publisher
American Geophysical Union
Publication Date
2009
First Page
1
Last Page
12
Abstract
As part of the Maui-Mesosphere and Lower Thermosphere program, data from the Utah State University Mesospheric Temperature Mapper (MTM) and the University of Illinois Meteor Wind Radar (MWR) have been used to investigate wave-driven dynamical interactions in the upper mesosphere at low latitudes. On 29 June 2003, short-period (20 min) gravity waves (GWs) were imaged in the MTM in the near-infrared OH and O2 airglow emissions for most of the night from 0700 to 1500 UT. The GWs were observed to disappear rapidly in the O2 data (peak altitude: 94 km) around 1400 UT but remained evident in the lower altitudes OH data (87 km) for a further 30 min. Coincident background wind variations measured by the MWR suggest that the GW disappearance at the O2 layer was most probably caused by a critical level (CL) interaction. However, at the OH layer, the GW fading may also have been due to wave saturation and instabilities. During this period (14001500 UT), no significant change in OH and O2 rotational temperatures were measured by the MTM; however, the background winds centered on the airglow layers were observed to increase by 10 m/s. The background wind acceleration from the disappearing gravity waves estimated from the airglow observations was larger below the CL than at the CL, consistent with the wind variation observed by the MWR.
Recommended Citation
Ejiri, M.K., M.J. Taylor, T. Nakamura, and S.J. Franke, Critical level interaction of a gravity wave with background winds driven by a large-scale wave perturbation, J. Geophys. Res., 114, D18117, doi:10,1029/2008JD011381, 2009.
Comments
Published by the American Geophysical Union in Journal of Geophysical Research.
http://www.agu.org/pubs/crossref/2009/2008JD011381.shtml
Publisher PDF is available for download through the link above.