All Physics Faculty Publications

Meteor Trails and Columniform Sprites

Document Type

Article

Journal/Book Title/Conference

Icarus

Volume

65

Publication Date

2000

First Page

148

Abstract

A theoretical model of columniform sprites (or c-sprites), a distinctive class of high altitude, temporally brief optical emissions, is presented and compared to observations which extends earlier work (1998, E. M. D. Symbalisty, R. Roussel-Dupré, and V. Yukhimuk, EOS Transactions of the AGU 79, No. 45, p. F129) by making a strong connection with meteors. The key features of the model are: (1) an ambient conductivity profile that falls between a measured nighttime and a measured daytime conductivity; (2) an aerosol reduced conductivity in a trail from a meteor that passed through some time during the evening, and (3) a cloud-to-ground (hereafter CG) lightning stroke, with sufficient charge transfer, subsequent to and occurring within an hour of the development of the reduced conductivity trail. The model predicts a temporally brief column of light resulting from the conventional breakdown of air in a strong electric field in the observed altitude range. For the case of a positive CG stroke the emissions are extinguished by the passage of a runaway electron beam. The electron beam is initiated by the same positive CG lightning stroke that allows the high altitude conventional breakdown to occur and propagates from the cloud tops to the ionosphere. Based on our modeling results, a negative CG lightning stroke, for the same amount of charge transfer, produces a column of light about twice as bright. The emissions are extinguished, in this case, by the ambient conductivity taking into account the increase due to the conventional breakdown of air. In both cases, for the CG lightning stroke parameters examined here, the simulated c-sprite emissions are brief and last less than 17 ms, or one CCD video field.

https://doi.org/10.1006/icar.2000.6517

Share

COinS