Growth and water relations of Liquidambar styraciflua L in an urban park and plaza

Document Type


Journal/Book Title/Conference








Publication Date


First Page


Last Page



Growth and water relations of 10-year-old sweet gum (Liquidambar styraciflua L.) street trees were studied in sites with low and high potential evapotranspiration to determine how these differences are integrated by growth and water relations over time. The trees were located in the parking strip between the curb and sidewalk at a partially vegetated urban park and an urban plaza in Seattle, Washington. Crown size, and seasonal and diurnal stomatal conductance and water potential, as well as diurnal air temperature and humidity, were measured over 2 growing seasons. Yearly trunk growth since transplanting was measured from increment cores. Vapor pressure deficits and air temperatures averaged 18% greater at the plaza, but whole-tree water loss appeared to be much lower than the park trees due to more restricted stomatal conductance and crown size. In addition, yearly diameter increment declined progressively once the plaza trees were established in the existing soil several years after transplanting. Lower water potential in the plaza trees indicated greater internal moisture deficits than the park trees, and tissue analysis revealed lower nutritional status, particularly nitrogen. A manipulative study of water and fertilizer to several additional plaza trees showed an interaction between water and nutrient deficiencies in the coarse and shallow soil that apparently limited growth. Furthermore, soil limitations probably interacted with paved surface conditions over time by reducing nutrient recycling from leaf litter, and generating higher vapor pressure deficits that would contribute to prolonged stomatal closure. Restricted growth and water relations status of the plaza trees represented an equilibrium between chronic high-resource demand above ground and limited below ground.

This document is currently not available here.