Session

Technical Session XI: Orbital Manuvering

Abstract

Small satellite propulsion is a subject of unique constraints and requirements. Based on University of Surrey experience in small satellite building and operation, these features are listed and explained. Available volume is often identified as the most severe constraint for a small satellite with power and cost being the other two major constraints. Mass is often only of secondary importance for small satellites. Propulsion dry mass fraction for a spacecraft grows upon the system scaling-down. For small spacecraft propulsion fraction can easily exceed 85%. In such a case, a combination of independent systems for multifunctional propulsion mission scenarios would aggravate the situation. Moreover, specific impulse is not a factor reflecting small satellite propulsion system performance since spacecraft velocity change is also a function of propulsion dry mass fraction. New conceptual and design solutions are suggested for small satellite propulsion with respect to its specific constraints and requirements. Features of future advanced, low-cost propulsion system for small satellite are described.

Share

COinS
 
Aug 16th, 12:00 PM

Specifics of Small Satellite Propulsion: Part 1

Small satellite propulsion is a subject of unique constraints and requirements. Based on University of Surrey experience in small satellite building and operation, these features are listed and explained. Available volume is often identified as the most severe constraint for a small satellite with power and cost being the other two major constraints. Mass is often only of secondary importance for small satellites. Propulsion dry mass fraction for a spacecraft grows upon the system scaling-down. For small spacecraft propulsion fraction can easily exceed 85%. In such a case, a combination of independent systems for multifunctional propulsion mission scenarios would aggravate the situation. Moreover, specific impulse is not a factor reflecting small satellite propulsion system performance since spacecraft velocity change is also a function of propulsion dry mass fraction. New conceptual and design solutions are suggested for small satellite propulsion with respect to its specific constraints and requirements. Features of future advanced, low-cost propulsion system for small satellite are described.