A Standardized, Distributed Computing Architecture: Results from Three Universities

Michael Swartwout, Washington University in St. Louis
Christopher Kitts, Santa Clara University
Pascal Stang, Santa Clara University
Glenn Lightsey, University of Texas at Austin

Abstract

At the 16th AIAA/USU Conference on Small Satellites, researchers at Santa Clara University (SCU) proposed a distributed computing architecture for small or multi-spacecraft missions. This architecture extended existing I2C, Dallas 1-wire and RS232 data protocols and was adaptable to a number of microcontrollers. Since then, that architecture has been implemented on six university-class space missions at three different universities. As “early adopters”, these universities had the typical challenges of working with a new, evolving standard and adapting the standard to their hardware and mission needs. Each faced additional, program-specific challenges related to project size, scope and infrastructure as well as the student background/training. Still, because of this architecture, every school saw three improvements: accelerated integration and training of new students; rapid modifications of existing systems; and school-wide collaboration among robotics projects. This paper reviews SCU’s distributed computing architecture, discusses the details of its implementation at all three universities, and provides lessons learned/lessons applied to six spacecraft programs: Akoya-A/Bandit-A & Akoya- B/Bandit-C at Washington University in St. Louis, EMERALD & ONYX at SCU, and FASTRAC and ARTEMIS at the University of Texas-Austin. The merits of adopting this architecture as a standard for university-class spacecraft are also reviewed.

 
Aug 10th, 10:00 AM

A Standardized, Distributed Computing Architecture: Results from Three Universities

At the 16th AIAA/USU Conference on Small Satellites, researchers at Santa Clara University (SCU) proposed a distributed computing architecture for small or multi-spacecraft missions. This architecture extended existing I2C, Dallas 1-wire and RS232 data protocols and was adaptable to a number of microcontrollers. Since then, that architecture has been implemented on six university-class space missions at three different universities. As “early adopters”, these universities had the typical challenges of working with a new, evolving standard and adapting the standard to their hardware and mission needs. Each faced additional, program-specific challenges related to project size, scope and infrastructure as well as the student background/training. Still, because of this architecture, every school saw three improvements: accelerated integration and training of new students; rapid modifications of existing systems; and school-wide collaboration among robotics projects. This paper reviews SCU’s distributed computing architecture, discusses the details of its implementation at all three universities, and provides lessons learned/lessons applied to six spacecraft programs: Akoya-A/Bandit-A & Akoya- B/Bandit-C at Washington University in St. Louis, EMERALD & ONYX at SCU, and FASTRAC and ARTEMIS at the University of Texas-Austin. The merits of adopting this architecture as a standard for university-class spacecraft are also reviewed.