All 2015 Content

Session

Technical Session III: Next on the Pad

Abstract

The Space Test Program (STP) at the Department of Defense (DoD) supports the development, evaluation, and advancement of new technologies needed for the future of spaceflight. STP-Houston provides opportunities for DoD and civilian space agencies to perform on-orbit research and technology demonstrations from the International Space Station (ISS). The STP-H5/ISEM (STP-Houston 5, ISS SpaceCube Experiment Mini) payload is scheduled for launch on the upcoming SpaceX 10 mission and will feature new technologies, including a hybrid space computer developed by the NSF CHREC Center, working closely with the NASA SpaceCube Team, known as the CHREC Space Processor (CSP). In this paper, we present the novel concepts behind CSP and the CSPv1 flight technologies on the ISEM mission. The ISEM-CSP system was subjected to environmental testing, including a thermal vacuum test, a vibration test, and two radiation tests, and results were encouraging and are presented. Primary objectives for ISEM-CSP are highlighted, which include processing, compression, and downlink of terrestrial-scene images for display on Earth, and monitoring of upset rates in various subsystems to provide environmental information for future missions. Secondary objectives are also presented, including experiments with features for fault-tolerant computing, reliable middleware services, FPGA partial reconfiguration, device virtualization, and dynamic synthesis.

Share

COinS
 
Aug 11th, 7:00 PM

CSP Hybrid Space Computing for STP-H5/ISEM on ISS

The Space Test Program (STP) at the Department of Defense (DoD) supports the development, evaluation, and advancement of new technologies needed for the future of spaceflight. STP-Houston provides opportunities for DoD and civilian space agencies to perform on-orbit research and technology demonstrations from the International Space Station (ISS). The STP-H5/ISEM (STP-Houston 5, ISS SpaceCube Experiment Mini) payload is scheduled for launch on the upcoming SpaceX 10 mission and will feature new technologies, including a hybrid space computer developed by the NSF CHREC Center, working closely with the NASA SpaceCube Team, known as the CHREC Space Processor (CSP). In this paper, we present the novel concepts behind CSP and the CSPv1 flight technologies on the ISEM mission. The ISEM-CSP system was subjected to environmental testing, including a thermal vacuum test, a vibration test, and two radiation tests, and results were encouraging and are presented. Primary objectives for ISEM-CSP are highlighted, which include processing, compression, and downlink of terrestrial-scene images for display on Earth, and monitoring of upset rates in various subsystems to provide environmental information for future missions. Secondary objectives are also presented, including experiments with features for fault-tolerant computing, reliable middleware services, FPGA partial reconfiguration, device virtualization, and dynamic synthesis.