Session

Session 6: The Year in Review II

Abstract

Kestrel Eye (KE) is a microsatellite technology demonstrator for the US Army Space and Missile Defense Command (USASMDC) / Army Forces Strategic Command (ARSTRAT) developed by Quantum Research International, Inc. and Adcole Maryland Aerospace (AMA). Kestrel Eye weighs approximately 50 kg and provides electro-optical images with tactically useful resolution as requested by the warfighters in theater. The warfighters in theater will task and receive data from the satellite during the same pass overhead. The data can be downlinked directly to provide rapid situational awareness to our Army Brigade Combat Teams in theater without the need for continental United States relays. By using a small satellite, the required logistics footprint in the field is reduced as compared to an Unmanned Aerial System (UAS). In addition, developing a constellation of small satellites increases survivability and provides graceful degradation as no individual satellite is critical to the functioning of the constellation. Once Kestrel Eye reaches production, it will have a relatively low cost at approximately $2 million per spacecraft and will have an operational life of greater than one year in low earth orbit. With its low cost, large numbers of satellites can be procured enabling the system to be dedicated to the tactical warfighter. Kestrel Eye was successfully deployed from the International Space Station on 24 October 2017. The performance of this satellite is now undergoing investigation to validate the specifications of the satellite are met. The checkout investigation is being performed jointly by a ground station in Huntsville, AL operated by USASMDC/ARSTRAT and one in Hawaii operated by United States Pacific Command (USPACOM). At the conclusion of those investigations, the satellite will undergo a series of exercise experiments to evaluate if similar satellites could support critical operations. If the experiments are successful, it is expected satellites of similar capability can be procured/operated at a low cost. This paper provides the background and development of Kestrel Eye as well as a current status of the orbital mission.

Share

COinS
 
Aug 7th, 5:30 PM

Kestrel Eye Block II

Kestrel Eye (KE) is a microsatellite technology demonstrator for the US Army Space and Missile Defense Command (USASMDC) / Army Forces Strategic Command (ARSTRAT) developed by Quantum Research International, Inc. and Adcole Maryland Aerospace (AMA). Kestrel Eye weighs approximately 50 kg and provides electro-optical images with tactically useful resolution as requested by the warfighters in theater. The warfighters in theater will task and receive data from the satellite during the same pass overhead. The data can be downlinked directly to provide rapid situational awareness to our Army Brigade Combat Teams in theater without the need for continental United States relays. By using a small satellite, the required logistics footprint in the field is reduced as compared to an Unmanned Aerial System (UAS). In addition, developing a constellation of small satellites increases survivability and provides graceful degradation as no individual satellite is critical to the functioning of the constellation. Once Kestrel Eye reaches production, it will have a relatively low cost at approximately $2 million per spacecraft and will have an operational life of greater than one year in low earth orbit. With its low cost, large numbers of satellites can be procured enabling the system to be dedicated to the tactical warfighter. Kestrel Eye was successfully deployed from the International Space Station on 24 October 2017. The performance of this satellite is now undergoing investigation to validate the specifications of the satellite are met. The checkout investigation is being performed jointly by a ground station in Huntsville, AL operated by USASMDC/ARSTRAT and one in Hawaii operated by United States Pacific Command (USPACOM). At the conclusion of those investigations, the satellite will undergo a series of exercise experiments to evaluate if similar satellites could support critical operations. If the experiments are successful, it is expected satellites of similar capability can be procured/operated at a low cost. This paper provides the background and development of Kestrel Eye as well as a current status of the orbital mission.