Session

Session V: Next on the Pad

Location

Utah State University, Logan, UT

Abstract

ESA Science Programme Committee (SPC) selected CHEOPS as the first small class science mission in 2012. CHEOPS is considered as a pilot case for the implementation of “small science missions” and its success is key for the continuation of fast-paced, small missions. The mission has been developed and brought into a flight readiness state within 5-6 years from selection, which is about half the time of other ESA missions. This paper focuses on the CHEOPS payload and its predicted capabilities. The 300mm effective aperture Ritchey-Chretien telescope provided by the CHEOPS consortium has been tested and characterized on ground in a 2 months calibration campaign after the qualification for flight. The results have led to performance estimations, which are discussed here. We show that the performance requirements in flight are expected to be met by the instrument. A preview is given towards the 2 months lasting In Orbit Commissioning (IOC) phase of the CHEOPS payload after LEOP and platform check-out. The activities in orbit range from dark current measurements, PSF characterization and parasitic stray light determination to AOCS and instrument performance verifications to science validation using reference transits.

Share

COinS
 
Aug 6th, 1:45 PM

CHEOPS launch in 2019! – Payload Capabilities and In-Orbit Commissioning Preview

Utah State University, Logan, UT

ESA Science Programme Committee (SPC) selected CHEOPS as the first small class science mission in 2012. CHEOPS is considered as a pilot case for the implementation of “small science missions” and its success is key for the continuation of fast-paced, small missions. The mission has been developed and brought into a flight readiness state within 5-6 years from selection, which is about half the time of other ESA missions. This paper focuses on the CHEOPS payload and its predicted capabilities. The 300mm effective aperture Ritchey-Chretien telescope provided by the CHEOPS consortium has been tested and characterized on ground in a 2 months calibration campaign after the qualification for flight. The results have led to performance estimations, which are discussed here. We show that the performance requirements in flight are expected to be met by the instrument. A preview is given towards the 2 months lasting In Orbit Commissioning (IOC) phase of the CHEOPS payload after LEOP and platform check-out. The activities in orbit range from dark current measurements, PSF characterization and parasitic stray light determination to AOCS and instrument performance verifications to science validation using reference transits.