Session

Technical Session VI: Advanced Technologies I

Location

Utah State University, Logan, UT

Abstract

A review of the component-level flight qualification efforts and power processing unit development status of the Ascendant Sub-kW Transcelestial Electric Propulsion System (ASTRAEUS) program is presented. Component-level qualification efforts were undertaken for the system’s ultra-compact heaterless LaB6 hollow cathode and electromagnets, both of which employ designs bespoke to ASTRAEUS, as they represent the highest failure risks for the thruster. Through parallel long-duration wear and ignition tests, the ASTRAEUS cathode demonstrated invariant discharge performance over more than 5000 h of operation at its maximum operating current of 4 A and demonstrated more than 25,000 ignition cycles. The ASTRAEUS electromagnets completed their environmental qualification through a demonstration of more than 1200 deep thermal cycles with no indication of coil degradation (the test articles previously completed qualification-level vibration and shock testing). ASTRAEUS’s prototype power processing unit has demonstrated more than 92% total power conversion efficiency and class-leading power density & specific power density of 4.5 W/cm3 & 1670 W/kg, respectively. The various power converters found in the ASTRAEUS power processing unit are reviewed with a focus on the methods by which such high performance was achieved.

Share

COinS
 
Aug 1st, 12:00 AM

Cathode & Electromagnet Qualification Status and Power Processing Unit Development Update for the Ascendant Sub-kW Transcelestial Electric Propulsion System

Utah State University, Logan, UT

A review of the component-level flight qualification efforts and power processing unit development status of the Ascendant Sub-kW Transcelestial Electric Propulsion System (ASTRAEUS) program is presented. Component-level qualification efforts were undertaken for the system’s ultra-compact heaterless LaB6 hollow cathode and electromagnets, both of which employ designs bespoke to ASTRAEUS, as they represent the highest failure risks for the thruster. Through parallel long-duration wear and ignition tests, the ASTRAEUS cathode demonstrated invariant discharge performance over more than 5000 h of operation at its maximum operating current of 4 A and demonstrated more than 25,000 ignition cycles. The ASTRAEUS electromagnets completed their environmental qualification through a demonstration of more than 1200 deep thermal cycles with no indication of coil degradation (the test articles previously completed qualification-level vibration and shock testing). ASTRAEUS’s prototype power processing unit has demonstrated more than 92% total power conversion efficiency and class-leading power density & specific power density of 4.5 W/cm3 & 1670 W/kg, respectively. The various power converters found in the ASTRAEUS power processing unit are reviewed with a focus on the methods by which such high performance was achieved.