Session

Technical Session XI: Advanced Technologies II

Location

Utah State University, Logan, UT

Abstract

In August 2019, two 1.5U AeroCube-10 satellites built by The Aerospace Corporation were deployed from a Cygnus resupply spacecraft. Each of the satellites has two star trackers which are many times smaller than commercially available alternatives. The significant size reduction is enabled by the SiOnyx XQE-0920 sensor which offers dramatically improved visible and near-infrared sensitivity in an uncooled CMOS platform. This allows the use of a smaller-aperture lens than traditionally used in small form factor star trackers, while maintaining the ability to detect stars of magnitude 5. The reduced volume enables innovative system engineering trades such as forgoing star tracker baffles, and instead flying multiple sensors on the same spacecraft to combat stray light by using the spacecraft body itself as a shield. The additional interior volume made available also enables more capable missions in smaller CubeSat form factors.

On-orbit results are presented showing angular accuracy and solution availability statistics as a function of angular rotation rate. A calibration technique to compensate for optical distortion is also presented, which enables the use of a low-cost COTS lens with a wide field of view. Despite the extremely small volume, the star tracking performance is comparable to units many times larger.

Share

COinS
 
Aug 1st, 12:00 AM

On-Orbit Results from an Ultra-Low SWaP Black Silicon Star Tracker

Utah State University, Logan, UT

In August 2019, two 1.5U AeroCube-10 satellites built by The Aerospace Corporation were deployed from a Cygnus resupply spacecraft. Each of the satellites has two star trackers which are many times smaller than commercially available alternatives. The significant size reduction is enabled by the SiOnyx XQE-0920 sensor which offers dramatically improved visible and near-infrared sensitivity in an uncooled CMOS platform. This allows the use of a smaller-aperture lens than traditionally used in small form factor star trackers, while maintaining the ability to detect stars of magnitude 5. The reduced volume enables innovative system engineering trades such as forgoing star tracker baffles, and instead flying multiple sensors on the same spacecraft to combat stray light by using the spacecraft body itself as a shield. The additional interior volume made available also enables more capable missions in smaller CubeSat form factors.

On-orbit results are presented showing angular accuracy and solution availability statistics as a function of angular rotation rate. A calibration technique to compensate for optical distortion is also presented, which enables the use of a low-cost COTS lens with a wide field of view. Despite the extremely small volume, the star tracking performance is comparable to units many times larger.