Session

Swifty Session 6: Propulsion

Location

Utah State University, Logan, UT

Abstract

This paper describes the development of Orbit Fab’s Tanker-001 Tenzing mission, the world’s first orbital propellant tanker. The development of a robust orbital propellant supply chain is critical to accelerating the growth of government and commercial space activities. The widespread availability of spacecraft refueling has the potential to provide a number of revolutionary benefits. High-value space assets could have their operational lives extended, as they would no longer be constrained by the amount of propellant stored onboard for maneuvering. On-orbit servicing missions would become more efficient, as servicing vehicles could be refueled and repeatedly used. A large orbital propellant supply would also enable new mission and business models based on operational flexibility and frequent maneuvering. These benefits would be particularly impactful on small satellites, where the ability to refuel could overcome the operational constraints of having smaller propellant tanks. This will greatly expand the market for small spacecraft as it increases their range of missions and capabilities. Launching no earlier than June 24, 2021, Tenzing is a 35 kg small satellite with an Astro Digital bus carrying a supply of storable propellant, high test peroxide (HTP). Tenzing’s propellant supply is being offered to customers for refueling and used to gather data on propellant storage. In addition to being the first propellant tanker, Tenzing is also an orbital laboratory including a variety of payloads intended to test key technologies for refueling. This includes the first flight of Orbit Fab’s Rapidly Attachable Fluid Transfer Interface (RAFTI), a stereo camera system, and a Halcyon HTP propulsion system designed and built by Benchmark Space Systems for orbital maneuvers. The latter two elements can be used to test rendezvous and flyby maneuvers, providing data to support the development of full rendezvous, proximity operations, and docking (RPOD) systems for future Orbit Fab missions.

Available for download on Saturday, August 07, 2021

Share

COinS
 
Aug 7th, 12:00 AM

Development and Launch of the World's First Orbital Propellant Tanker

Utah State University, Logan, UT

This paper describes the development of Orbit Fab’s Tanker-001 Tenzing mission, the world’s first orbital propellant tanker. The development of a robust orbital propellant supply chain is critical to accelerating the growth of government and commercial space activities. The widespread availability of spacecraft refueling has the potential to provide a number of revolutionary benefits. High-value space assets could have their operational lives extended, as they would no longer be constrained by the amount of propellant stored onboard for maneuvering. On-orbit servicing missions would become more efficient, as servicing vehicles could be refueled and repeatedly used. A large orbital propellant supply would also enable new mission and business models based on operational flexibility and frequent maneuvering. These benefits would be particularly impactful on small satellites, where the ability to refuel could overcome the operational constraints of having smaller propellant tanks. This will greatly expand the market for small spacecraft as it increases their range of missions and capabilities. Launching no earlier than June 24, 2021, Tenzing is a 35 kg small satellite with an Astro Digital bus carrying a supply of storable propellant, high test peroxide (HTP). Tenzing’s propellant supply is being offered to customers for refueling and used to gather data on propellant storage. In addition to being the first propellant tanker, Tenzing is also an orbital laboratory including a variety of payloads intended to test key technologies for refueling. This includes the first flight of Orbit Fab’s Rapidly Attachable Fluid Transfer Interface (RAFTI), a stereo camera system, and a Halcyon HTP propulsion system designed and built by Benchmark Space Systems for orbital maneuvers. The latter two elements can be used to test rendezvous and flyby maneuvers, providing data to support the development of full rendezvous, proximity operations, and docking (RPOD) systems for future Orbit Fab missions.