Session

Technical Session 2: Next on the Pad

Location

Utah State University, Logan, UT

Abstract

The Imaging X-ray Polarimetry Explorer (IXPE) is a NASA Small Explorer x-ray astrophysics mission being implemented by a geographically dispersed team. Each IXPE partner provides unique capabilities and experience which are utilized to design, build and launch the IXPE observator. A rigorous and iterative systems engineering approach is essential to ensuring the successful realization of reliable and cost effective IXPE mission system. The IXPE collaboration and observatory complexity provide both unique challenges and advantages for project systems engineering. The project uses established and tailored systems engineering (SE) methods and teaming approaches to achieve the IXPE mission goals. The IXPE systems engineering team spans all partner organizations. Currently, the project is in system integration and test working through structural environmental testing–vibration testing is just starting. Systems work is now focused on requirements management and maturity assessments, requirements verification and validation via sell-off packages (SOP) and interface control document (ICD) verification while supporting environmental test planning and execution. IXPE verification, validation and characterization (V&V) starts at the component/unit level and rolls up to appropriate higher levels where V&V compliance is assured by collaborative development by the cross-organizational V&V Team. This paper provides a technical summary of the IXPE concept of operations and mission-system (payload, spacecraft, observatory, ground system, launch vehicle), overviews the IXPE systems engineering approach (communications, project reviews, requirements analysis and management, baseline design and design trade studies, interfaces definition and documentation, resource management), describes the verification, validation and characterization activities (requirements validation, models and simulations validation, systems integration and test (I&T), system validation), discusses risk and opportunities philosophy and implementation, outlines COVID 19 accommodations, itemizes some key challenges and lessons-learned followed by the path to launch and conclusions.

Share

COinS
 
Aug 9th, 11:30 AM

Imaging X-Ray Polarimeter Explorer Systems Engineering Approach and Implementation

Utah State University, Logan, UT

The Imaging X-ray Polarimetry Explorer (IXPE) is a NASA Small Explorer x-ray astrophysics mission being implemented by a geographically dispersed team. Each IXPE partner provides unique capabilities and experience which are utilized to design, build and launch the IXPE observator. A rigorous and iterative systems engineering approach is essential to ensuring the successful realization of reliable and cost effective IXPE mission system. The IXPE collaboration and observatory complexity provide both unique challenges and advantages for project systems engineering. The project uses established and tailored systems engineering (SE) methods and teaming approaches to achieve the IXPE mission goals. The IXPE systems engineering team spans all partner organizations. Currently, the project is in system integration and test working through structural environmental testing–vibration testing is just starting. Systems work is now focused on requirements management and maturity assessments, requirements verification and validation via sell-off packages (SOP) and interface control document (ICD) verification while supporting environmental test planning and execution. IXPE verification, validation and characterization (V&V) starts at the component/unit level and rolls up to appropriate higher levels where V&V compliance is assured by collaborative development by the cross-organizational V&V Team. This paper provides a technical summary of the IXPE concept of operations and mission-system (payload, spacecraft, observatory, ground system, launch vehicle), overviews the IXPE systems engineering approach (communications, project reviews, requirements analysis and management, baseline design and design trade studies, interfaces definition and documentation, resource management), describes the verification, validation and characterization activities (requirements validation, models and simulations validation, systems integration and test (I&T), system validation), discusses risk and opportunities philosophy and implementation, outlines COVID 19 accommodations, itemizes some key challenges and lessons-learned followed by the path to launch and conclusions.