Session

Pre-Conference Workshop Session 3: Year in Review - Research & Academia

Location

Utah State University, Logan, UT

Abstract

The Ionospheric Dynamics and Attitude Subsystem Satellite (IDEASSat) is a 3U CubeSat carrying a Compact Ionospheric Probe (CIP) to detect ionospheric irregularities that can impact the usability and accuracy of global satellite navigation systems (GNSS), as well as satellite and terrestrial over the horizon communications. The spacecraft was developed by National Central University (NCU) in Taiwan, with additional development and operational support from partners in the International Satellite Program in Science and Education (INSPIRE) consortium. The spacecraft system needed to accommodate these mission objectives required three axis attitude control, dual band communications capable of supporting both tracking, telemetry and command (TT&C) and science data downlink, as well as flight software and ground systems capable of supporting the autonomous operation and short contact times inherent to a low Earth orbit mission developed on a limited university budget with funding agency-imposed constraints. As the first spacecraft developed at NCU, lessons learned during the development, integration, and operation of IDEASSat have proven to be crucial to the objective of developing a sustainable small satellite program. IDEASSat was launched successfully on January 24, 2021 aboard the SpaceX Falcon 9 Transporter 1 flight. and successfully began operations, demonstrating power, thermal, and structural margins, as well as validation of uplink and downlink communications functionality, and autonomous operation. A serious anomaly occurred after 22 days on orbit when communication with the spacecraft were abruptly lost. Communication was re-established after 1.5 months for sufficient time to downlink stored flight data, which allowed the cause of the blackout to be identified to a high level of confidence and precision. In this paper, we will report on experiences and anomalies encountered during the final flight model integration and delivery, commissioning, and operations. The agile support from the international amateur radio community and INSPIRE partners were extremely helpful in this process, especially during the initial commissioning phase following launch. It is hoped that the lessons learned reported here will be helpful for other university teams working to develop spaceflight capacity.

Available for download on Saturday, August 07, 2021

Share

COinS
 
Aug 7th, 12:00 AM

Integration, Launch, and First Results from IDEASSat/INSPIRESat-2 - A 3U CubeSat for Ionospheric Physics and Multi-National Capacity Building

Utah State University, Logan, UT

The Ionospheric Dynamics and Attitude Subsystem Satellite (IDEASSat) is a 3U CubeSat carrying a Compact Ionospheric Probe (CIP) to detect ionospheric irregularities that can impact the usability and accuracy of global satellite navigation systems (GNSS), as well as satellite and terrestrial over the horizon communications. The spacecraft was developed by National Central University (NCU) in Taiwan, with additional development and operational support from partners in the International Satellite Program in Science and Education (INSPIRE) consortium. The spacecraft system needed to accommodate these mission objectives required three axis attitude control, dual band communications capable of supporting both tracking, telemetry and command (TT&C) and science data downlink, as well as flight software and ground systems capable of supporting the autonomous operation and short contact times inherent to a low Earth orbit mission developed on a limited university budget with funding agency-imposed constraints. As the first spacecraft developed at NCU, lessons learned during the development, integration, and operation of IDEASSat have proven to be crucial to the objective of developing a sustainable small satellite program. IDEASSat was launched successfully on January 24, 2021 aboard the SpaceX Falcon 9 Transporter 1 flight. and successfully began operations, demonstrating power, thermal, and structural margins, as well as validation of uplink and downlink communications functionality, and autonomous operation. A serious anomaly occurred after 22 days on orbit when communication with the spacecraft were abruptly lost. Communication was re-established after 1.5 months for sufficient time to downlink stored flight data, which allowed the cause of the blackout to be identified to a high level of confidence and precision. In this paper, we will report on experiences and anomalies encountered during the final flight model integration and delivery, commissioning, and operations. The agile support from the international amateur radio community and INSPIRE partners were extremely helpful in this process, especially during the initial commissioning phase following launch. It is hoped that the lessons learned reported here will be helpful for other university teams working to develop spaceflight capacity.