Session

Swifty Session 3

Location

Utah State University, Logan, UT

Abstract

The Aerospace Corporation's Rogue-alpha, beta program was a rapid prototyping demonstration aimed at building and deploying an infrared remote sensing capability into low Earth orbit within 18 months. The two satellites and their data were then used for three years as an experimental testbed for future proliferated low Earth orbit (pLEO) constellations. Their launch took place on November 2, 2019, followed by boost and deployment of two identical spacecraft (Rogue-alpha and beta) by the Cygnus ISS cargo vessel into circular 460-km, 52° inclined orbits on January31, 2020. The primary sensors were 1.4-micron band, InGaAs short wavelength infrared (SWIR) cameras with640x512 pixels and a 28° field-of-view. The IR sensors were accompanied by 10-megapixel visible context cameras with a 37° field-of-view. Star sensors were also tested as nighttime imaging sensors. Three years of spacecraft and sensor operations were achieved, allowing a variety of experiments to be conducted. The first year focused on alignment and checkout of the laser communication systems, sensor calibration, and priority IR remote sensing objectives, including the study of Earth backgrounds, observation of natural gas flares, and detection of rocket launches. The second year of operations added study of environmental remote sensing targets, including severe storms, wildfires, and volcanic eruptions, while continuing to gather Earth backgrounds and rocket launch observations. The final year emphasized advanced data processing and exploitation techniques applied to collected data, using machine learning and artificial intelligence for tasks such as target tracking, frame co-registration, and stereo data exploitation. Mission operations continued in the final year, with an emphasis on collecting additional rocket launch data, and higher frame rate backgrounds data. This report summarizes the Rogue alpha, beta mission’s outcomes and presents processed IR data, including the detection and tracking of rocket launches with dynamic Earth backgrounds, embedded moving targets in background scenes, and the use of pointing-based registration to create fire line videos of severe wildfires and 3D scenes of pyrocumulonimbus clouds. Lessons learned from the experimental ConOps, data exploitation, and database curation are also summarized for application to future pLEO constellation missions.

SSC23-S3-11 - Presentation (1).pptx (286613 kB)
SSC23-S3-11 Presentation

Share

COinS
 
Aug 10th, 9:45 AM

The Rogue Alpha and Beta Mission: Operations, Infrared Remote Sensing, LEO Data Processing, and Lessons Learned From Three Years on Orbit With Two Laser Communication-Equipped 3U CubeSats

Utah State University, Logan, UT

The Aerospace Corporation's Rogue-alpha, beta program was a rapid prototyping demonstration aimed at building and deploying an infrared remote sensing capability into low Earth orbit within 18 months. The two satellites and their data were then used for three years as an experimental testbed for future proliferated low Earth orbit (pLEO) constellations. Their launch took place on November 2, 2019, followed by boost and deployment of two identical spacecraft (Rogue-alpha and beta) by the Cygnus ISS cargo vessel into circular 460-km, 52° inclined orbits on January31, 2020. The primary sensors were 1.4-micron band, InGaAs short wavelength infrared (SWIR) cameras with640x512 pixels and a 28° field-of-view. The IR sensors were accompanied by 10-megapixel visible context cameras with a 37° field-of-view. Star sensors were also tested as nighttime imaging sensors. Three years of spacecraft and sensor operations were achieved, allowing a variety of experiments to be conducted. The first year focused on alignment and checkout of the laser communication systems, sensor calibration, and priority IR remote sensing objectives, including the study of Earth backgrounds, observation of natural gas flares, and detection of rocket launches. The second year of operations added study of environmental remote sensing targets, including severe storms, wildfires, and volcanic eruptions, while continuing to gather Earth backgrounds and rocket launch observations. The final year emphasized advanced data processing and exploitation techniques applied to collected data, using machine learning and artificial intelligence for tasks such as target tracking, frame co-registration, and stereo data exploitation. Mission operations continued in the final year, with an emphasis on collecting additional rocket launch data, and higher frame rate backgrounds data. This report summarizes the Rogue alpha, beta mission’s outcomes and presents processed IR data, including the detection and tracking of rocket launches with dynamic Earth backgrounds, embedded moving targets in background scenes, and the use of pointing-based registration to create fire line videos of severe wildfires and 3D scenes of pyrocumulonimbus clouds. Lessons learned from the experimental ConOps, data exploitation, and database curation are also summarized for application to future pLEO constellation missions.