Choosing a Starting Configuration for Particle Swarm Optimization

Mark Richards, Brigham Young University-Utah
Dan Ventura, Brigham Young University-Utah

Description

The performance of Particle Swarm Optimization can be improved by strategically selecting the starting positions of the particles. This work suggests the use of generators from centroidal Voronoi tessellations as the starting points for the swarm. The performance of swarms initialized with this method is compared with the standard PSO algorithm on several standard test functions. Results suggest that CVT initialization improves PSO performance in high-dimensional spaces.

 
May 10th, 9:00 AM

Choosing a Starting Configuration for Particle Swarm Optimization

Salt Lake Community College

The performance of Particle Swarm Optimization can be improved by strategically selecting the starting positions of the particles. This work suggests the use of generators from centroidal Voronoi tessellations as the starting points for the swarm. The performance of swarms initialized with this method is compared with the standard PSO algorithm on several standard test functions. Results suggest that CVT initialization improves PSO performance in high-dimensional spaces.