Document Type


Journal/Book Title/Conference

Forest Science






Society of American Foresters

Publication Date


First Page


Last Page



Quaking or trembling aspen (Populus tremuloides Michx.) forests occur in highly diverse setting across North America. However, management of distinct communities has long relied on a single aspen to-conifer successional model. We examine a variety of aspen dominated stand types in the western portion of its range as ecological systems; avoiding an exclusive focus on seral dynamics or single species management. We build a case for a large-scale functional aspen typology based on existing literature. Aspen functional types are defined as aspen communities that differ markedly in their physical and biological processes. The framework presented here describes two “functional types” and seven embedded “subtypes”: Seral (boreal, montane), Stable (parkland, Colorado Plateau, elevation and aspect limited, terrain isolated), and a Crossover Seral-Stable subtype (riparian). The assessment hinges on a matrix comparing proposed functional types across a suite of environmental characteristics. Differences among functional groups based on physiological and climatic conditions, stand structures and dynamics, and disturbance types and periodicity are described herein. We further examine management implications and challenges, such as human alterations, ungulate herbivory, and climate futures, that impact the functionality of these aspen systems. The functional framework lends itself well to stewardship and research that seeks to understand and emulate ecological processes rather than combat them. We see advantages of applying this approach to other widespread forest communities that engender diverse functional adaptations.