Involvement of Calcium and Calmodulin in the Regulation of Ovarian Steroidogenesis in Atlantic Croaker (Micropogonias undulatus) and Modulation by Aroclor 1254

Document Type

Article

Journal/Book Title/Conference

General and Comparative Endocrinology

Volume

144

Issue

6/2

Publication Date

2005

First Page

211

Last Page

223

Abstract

The involvement of calcium-dependent signal transduction pathways in the regulation of ovarian steroidogenesis was investigated in Atlantic croaker. Treatment with the calcium ionophores A23187 and ionomycin caused a 2- to 5-fold increase in basal steroid accumulation by croaker ovarian tissue in vitro. A23187 potentiated human chorionic gonadotropin (hCG)-induced testosterone (T) accumulation, whereas it inhibited accumulation of estradiol-17β (E2) and the conversion of T to E2, suggesting that intracellular calcium modulates aromatase enzyme activity. Gonadotropin stimulation of ovarian steroidogenesis was decreased in the presence of EGTA and inhibitors of voltage-sensitive calcium channels (VSCCs) and inositol-1,4,5-triphosphate-receptors(IP3Rs), indicating that releases of calcium from both intracellular and extracellular stores are components of the signal transduction pathways initiated by gonadotropin. Calmodulin is also involved in the regulation of ovarian steroidogenesis in croaker, since the calmodulin inhibitors W-7 and trifluoperazine (TFP) attenuated hCG-stimulated T and E2 accumulation. These results are broadly similar to those reported previously in goldfish and suggest that the major calcium-dependent signaling pathways involved in gonadotropin stimulation of ovarian steroidogenesis in tetrapods are also present in teleosts. In addition, the involvement of calcium in the regulation of aromatase activity was demonstrated for the first time in a vertebrate ovary. Finally, acute exposure to 0.001–1 ppm Aroclor 1254 induced up to a 5-fold increase in hCG-stimulated E2 accumulation, and this effect was attenuated by co-treatment with inhibitors of VSCCs and calmodulin, suggesting the existence of a novel mechanism of endocrine disruption by an environmental contaminant involving alteration of calcium-dependent signaling pathways regulating steroidogenesis.

Share

COinS