Start Date
6-29-2016 12:05 PM
End Date
6-29-2016 1:35 PM
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Singh, V. (2016). Tsallis Entropy Theory for Hydraulic Modeling. In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June (pp. 676-677). (ISBN 978-1-884575-75-4).
Abstract
Hydraulic structures serve a multitude of human needs. They are needed for water supply, water transfer, water diversion, irrigation, land reclamation, drainage, flood control, hydropower generation, river training, navigation, coastal protection, pollution abatement, and transportation. Many of the structures, such as channels, culverts, and impoundments, have been with us since the birth of human civilization; some, such as spillways, dams, and levees, are more than two centuries old; and some are of more recent origin. In the beginning, structures were designed more or less empirically. Then, engineering and economics constituted the sole foundation of design. Nearly fifty years ago, planning and design of hydraulic structures went through a dramatic metamorphosis. These days, designs are based on both engineering and non-engineering aspects. The engineering aspects encompass planning, development, design, operation and management; and non-engineering aspects include environmental impact assessment, socio-economic analysis, policy making, and impact on society.
Included in
Tsallis Entropy Theory for Hydraulic Modeling
Portland, OR
Hydraulic structures serve a multitude of human needs. They are needed for water supply, water transfer, water diversion, irrigation, land reclamation, drainage, flood control, hydropower generation, river training, navigation, coastal protection, pollution abatement, and transportation. Many of the structures, such as channels, culverts, and impoundments, have been with us since the birth of human civilization; some, such as spillways, dams, and levees, are more than two centuries old; and some are of more recent origin. In the beginning, structures were designed more or less empirically. Then, engineering and economics constituted the sole foundation of design. Nearly fifty years ago, planning and design of hydraulic structures went through a dramatic metamorphosis. These days, designs are based on both engineering and non-engineering aspects. The engineering aspects encompass planning, development, design, operation and management; and non-engineering aspects include environmental impact assessment, socio-economic analysis, policy making, and impact on society.