Abstract
Small satellites can enable a new kind of mission architecture: inspecting larger satellites on orbit in close proximity without mechanical contact. Induction coupling is a new actuation technology that can augment on-orbit servicing by exploiting eddy-current forces and torques. Current technologies for applying forces and torques between two spacecraft share a glaring disadvantage: they require direct contact or propellant. By using the forces between a magnetic field and the electric currents it induces in a target, an induction coupler can control the relative position and orientation between a chaser spacecraft and a target without physical contact. A system utilizing these eddy-current effects places relatively few requirements on the target and chaser compared to other proposed electromagnetic actuation concepts. This paper presents a system overview of a contactless induction coupler, outlines those requirements through the analysis of an inspection mission on the International Space Station, and traces them to flight applications through ongoing experimental work.
Poster
A New Actuator for On-Orbit Inspection
Small satellites can enable a new kind of mission architecture: inspecting larger satellites on orbit in close proximity without mechanical contact. Induction coupling is a new actuation technology that can augment on-orbit servicing by exploiting eddy-current forces and torques. Current technologies for applying forces and torques between two spacecraft share a glaring disadvantage: they require direct contact or propellant. By using the forces between a magnetic field and the electric currents it induces in a target, an induction coupler can control the relative position and orientation between a chaser spacecraft and a target without physical contact. A system utilizing these eddy-current effects places relatively few requirements on the target and chaser compared to other proposed electromagnetic actuation concepts. This paper presents a system overview of a contactless induction coupler, outlines those requirements through the analysis of an inspection mission on the International Space Station, and traces them to flight applications through ongoing experimental work.