Cytokine gene expression in the maternal-fetal interface after somatic cell nuclear transfer pregnancies in small ruminants

Heloisa M. Rutigliano, Utah State University
Amanda Wilhelm, Utah State University
Justin Hall, Utah State University
Bi Shi, Utah State University
Qinggang Meng, Utah State University
Rusty D. Stott, Utah State University
Thomas D. Bunch, Utah State University
Kenneth L. White, Utah State University
Christopher J. Davies, Utah State University
Irina A. Polejaeva, Utah State University


The present retrospective study investigated pregnancy rates, the incidence of pregnancy loss and large offspring syndrome (LOS) and immune-related gene expression of sheep and goat somatic cell nuclear transfer (SCNT) pregnancies. We hypothesised that significantly higher pregnancy losses observed in sheep compared with goat SCNT pregnancies are due to the increased amounts of T-helper 1 cytokines and proinflammatory mediators at the maternal-fetal interface. Sheep and goat SCNT pregnancies were generated using the same procedure. Control pregnancies were established by natural breeding. Although SCNT pregnancy rates at 45 days were similar in both species, pregnancy losses between 45 and 60 days of gestation and the incidence of LOS were significantly greater in sheep than in goats. At term, the expression of proinflammatory genes in sheep SCNT placentas was increased, whereas that in goats was similar to that in control animals. Genes with altered expression in sheep SCNT placentas included cytotoxic T-lymphocyte-Associated protein 4 (CTLA4), interleukin 2 receptor alpha (IL2RA), cluster of differentiation 28 (CD28), interferon gamma (IFNG), interleukin 6 (IL6), interleukin 10 (IL10), transforming growth factor beta 1 (TGFB1), tumor necrosis factor alpha (TNF-), interleukin 1 alpha (IL1A) and chemokine (C-X-C motif) ligand 8 (CXCL8). Major histocompatibility complex-I protein expression was greater in sheep and goat SCNT placentas at term than in control pregnancies. An unfavourable immune environment is present at the maternal-fetal interface in sheep SCNT pregnancies.