Description
SDNET2018 is an annotated image dataset for training, validation, and benchmarking of artificial intelligence based crack detection algorithms for concrete. SDNET2018 contains over 56,000 images of cracked and non-cracked concrete bridge decks, walls, and pavements. The dataset includes cracks as narrow as 0.06 mm and as wide as 25 mm. The dataset also includes images with a variety of obstructions, including shadows, surface roughness, scaling, edges, holes, and background debris. SDNET2018 will be useful for the continued development of concrete crack detection algorithms based on deep learning convolutional neural networks, which are a subject of continued research in the field of structural health monitoring. .jpe
Author ORCID Identifier
Marc Maguire https://orcid.org/0000-0002-7897-0344
OCLC
1078404353
Document Type
Dataset
DCMI Type
Dataset
File Format
.jpeg, .txt
Publication Date
5-17-2018
Publisher
Utah State University
Methodology
230 images of cracked and non-cracked concrete surfaces (54 bridge decks, 72 walls, 104 pavements) are captured using a 16 MP Nikon digital camera. The bridge decks were located at the Utah State University system, material, and structural health (SMASH) laboratory. The inspected walls belong to Russell/Wanlass Performance Hall building located on USU campus The pavement images were acquired from the roads and sidewalks on USU campus. Each image is segmented into 256 ◊ 256 px subimages. Each subimage is labeled as C if there was crack in the subimage or U if there was not a crack.
Referenced by
S. Dorafshan and M. Maguire, "Autonomous detection of concrete cracks on bridge decks and fatigue cracks on steel members," in Digital Imaging 2017, Mashantucket, CT, 2017.
S. Dorafshan, M. Maguire and M. Chang, "Comparing automated image-based crack detection techniques in spatial and frequency domains," in Proceedings of the 26th American Society of Nondestructive Testing Research Symposium, Jacksonville, FL, 2017.
S. Dorafshan, M. Maguire, N. Hoffer and C. Coopmans, "Challenges in bridge inspection using small unmanned aerial systems: Results and lessons learned," in Proceedings of the 2017 International Conference on Unmanned Aircraft Systems, Miami, FL, 2017.
S. Dorafshan, C. Coopmans, R. J. Thomas and M. Maguire, "Deep Learning Neural Networks for sUAS-Assisted Structural Inspections, Feasibility and Application," in ICUAS 2018, Dallas, TX, 2018.
S. Dorafshan, M. Maguire and X. Qi, "Automatic Surface Crack Detection in Concrete Structures Using OTSU Thresholding and Morphological Operations," Utah State University, Logan, Utah, USA, 2016.
Dorafshan, S., Thomas, R. J., & Maguire, M. (2018). Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Construction and Building Materials, 186, 1031–1045. https://doi.org/10.1016/j.conbuildmat.2018.08.011
S. Dorafshan, R. Thomas and M. Maguire, "Image Processing Algorithms for Vision-based Crack Detection in Concrete Structures," Submitted to Advanced Concrete Technology, 2018.
Language
eng
Code Lists
SDNET2018: Structural Defects Network 2018
Disciplines
Civil and Environmental Engineering
License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Maguire, M., Dorafshan, S., & Thomas, R. J. (2018). SDNET2018: A concrete crack image dataset for machine learning applications. Utah State University. https://doi.org/10.15142/T3TD19
Checksum
677411e784f194422c90f52d9ed0d7c6