Aspen Bibliography
Scaling isoprene fluxes from leaves to canopies: test cases over a boreal aspen and a mixed species temperate forest
Document Type
Article
Journal/Book Title/Conference
Hydrocarbon special issue, Journal-of-Applied-Meteorology
Volume
38
Issue
7 Hydrocarbon special issue/J
First Page
885
Last Page
898
Publication Date
1997
Abstract
The rate at which isoprene is emitted by a forest depends on an array of environmental variables, the forest’s biomass, and its species composition. At present it is unclear whether errors in canopy-scale and process-level isoprene emission models are due to inadequacies in leaf-to-canopy integration theory or the imperfect assessment of the isoprene-emitting biomass in the flux footprint. To address this issue, an isoprene emission model (CAN- VEG) was tested over a uniform aspen stand and a mixed-species, broad-leaved forest.
The isoprene emission model consists of coupled micrometeorological and physiological modules. The mi- crometeorological module computes leaf and soil energy exchange, turbulent diffusion, scalar concentration profiles, and radiative transfer through the canopy. Environmental variables that are computed by the micro- meteorological module, in turn, drive physiological modules that calculate leaf photosynthesis, stomatal con- ductance, transpiration and leaf, bole and soil/root respiration, and rates of isoprene emission.
The isoprene emission model accurately predicted the diurnal variation of isoprene emission rates over the boreal aspen stand, as compared with micrometeorological flux measurements. The model’s ability to simulate isoprene emission rates over the mixed temperate forest, on the other hand, depended strongly upon the amount of isoprene-emitting biomass, which, in a mixed-species forest, is a function of the wind direction and the horizontal dimensions of the flux footprint. When information on the spatial distribution of biomass and the flux footprint probability distribution function were included, the CANVEG model produced values of isoprene emission that compared well with micrometeorological measurements. The authors conclude that a mass and energy exchange model, which couples flows of carbon, water, and nutrients, can be a reliable tool for integrating leaf-scale, isoprene emission algorithms to the canopy dimension over dissimilar vegetation types as long as the vegetation is characterized appropriately.
Recommended Citation
Baldocchi, D.D.; Fuentes, J.D.; Bowling, D.R.; Turnipseed, A.A.; Monson, R.K.; Fuentes, J.D.; and Lamb, B., "Scaling isoprene fluxes from leaves to canopies: test cases over a boreal aspen and a mixed species temperate forest" (1997). Aspen Bibliography. Paper 1573.
https://digitalcommons.usu.edu/aspen_bib/1573