Aspen Bibliography

Vegetation Soils and Forest Productivity in Selected Forest Types in Interior Alaska USA

Document Type

Article

Journal/Book Title/Conference

Canadian Journal of Forest Research

Volume

13

Issue

5

First Page

703

Last Page

720

Publication Date

1983

Abstract

Vegetation, forest productivity, and soils of 23 forest stands in the taiga of interior Alaska are described. The stands are arranged on an environmental gradient from an aspen (Populustremuloides Michx.) stand on a dry, steep south-facing bluff, to open black spruce (Piceamariana (Mill.) B.S.P.) stands underlain by permafrost on north-facing slopes. The coldest site is a mixed white spruce (Piceaglauca (Moench) Voss) and black spruce woodland at the treeline. Mesic upland sites are represented by successional stands of paper birch (Betulapapyrifera Marsh.) and aspen, and highly productive stands of white spruce. Several floodplain stands represent the successional sequence from productive balsam poplar (Populusbalsamifera L.) and white spruce to black spruce stands underlain by permafrost on the older terraces. The environmental gradient is described by using two soil factors: soil moisture and annual accumulated soil degree days (SDD), which range from 2217 SDD for the warmest aspen stand to 480 SDD for the coldest permafrost-dominated black spruce site. Soils vary from Alfie Cryochrepts on most of the mesic sites to Histic Pergelic Cryochrepts on the colder sites underlain by permafrost. A typical soil profile is described for each major forest type. A black spruce stand on permafrost has the lowest tree standing crop (15806 g•m−2) and annual productivity (56 g•m−2•year−1) whereas a mature white spruce stand has the largest tree standing crop (24 577 g•m−2) and an annual productivity of 540 g•m−2•year−1, but the successional balsam poplar stand on flood plain alluvium has the highest annual tree increment (952 g•m−2•year−1). The study supports the hypothesis that black spruce is a nutrient poor, unproductive forest type and that its low productivity is primarily the result of low soil temperature and high soil moisture.

Share

 
COinS